Publications

2024

  1. arXiv
    Oscillatory State-Space Models
    T. Konstantin Rusch, and Daniela Rus
    arXiv preprint
  2. arXiv
    Improving Efficiency of Sampling-based Motion Planning via Message-Passing Monte Carlo
    Makram Chahine, T. Konstantin Rusch, Zach J Patterson, and Daniela Rus
    arXiv preprint
  3. arXiv
    Relaxed Equivariance via Multitask Learning
    Ahmed A. Elhag, T. Konstantin Rusch, Francesco Di Giovanni, and Michael M Bronstein
    arXiv preprint
  4. PNAS
    Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks
    T. Konstantin Rusch, Nathan Kirk, Michael M Bronstein, Christiane Lemieux, and Daniela Rus
    Proceedings of the National Academy of Sciences
  5. TMLR
    How does over-squashing affect the power of GNNs?
    Francesco Di Giovanni, T. Konstantin Rusch, Michael M. Bronstein, Andreea Deac, Marc Lackenby, Siddhartha Mishra, and Petar Veličković
    Transactions on Machine Learning Research

2023

  1. NeurIPS
    Neural Oscillators are Universal
    Samuel Lanthaler, T. Konstantin Rusch, and Siddhartha Mishra
    The 37th Conference on Neural Information Processing Systems.
  2. PhD thesis
    Physics-inspired Machine Learning
    Rusch, T. Konstantin
    PhD thesis
  3. arXiv
    A Survey on Oversmoothing in Graph Neural Networks
    T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra
    arXiv preprint
  4. Physics4ML Spotlight
    Multi-Scale Message Passing Neural PDE Solvers
    Léonard Equer, T. Konstantin Rusch, and Siddhartha Mishra
    ICLR Workshop on Physics for Machine Learning
    Spotlight Presentation (top 7% of all submitted papers)
  5. ICLR
    Gradient Gating for Deep Multi-Rate Learning on Graphs
    T. Konstantin Rusch, Benjamin P. Chamberlain, Michael W. Mahoney, Michael M. Bronstein, and Siddhartha Mishra
    The 11th International Conference on Learning Representations.

2022

  1. ICML
    Graph-Coupled Oscillator Networks
    T. Konstantin Rusch, Benjamin P. Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael M. Bronstein
    The 39th International Conference on Machine Learning.
  2. ICLR Spotlight
    Long Expressive Memory for Sequence Modeling
    T. Konstantin Rusch, Siddhartha Mishra, N. Benjamin Erichson, and Michael W. Mahoney
    The 10th International Conference on Learning Representations.
    Spotlight Presentation (top 6% of all submitted papers)

2021

  1. SISC
    Higher-Order Quasi-Monte Carlo Training of Deep Neural Networks
    Marcello Longo, Siddhartha Mishra, T. Konstantin Rusch, and Christoph Schwab
    SIAM Journal on Scientific Computing.
  2. ICML
    UnICORNN: A recurrent model for learning very long time dependencies
    T. Konstantin Rusch, and Siddhartha Mishra
    The 38th International Conference on Machine Learning.
  3. ICLR Oral
    Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
    T. Konstantin Rusch, and Siddhartha Mishra
    The 9th International Conference on Learning Representations.
    Oral Presentation (top 1% of all submitted papers)
  4. SINUM
    Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
    Siddhartha Mishra, and T. Konstantin Rusch
    SIAM Journal on Numerical Analysis.

2018

  1. Turbo Expo
    Reproducing Existing Nacelle Geometries With the Free-Form Deformation Parametrization
    T. Konstantin Rusch, Martin Siggel, and Richard-Gregor Becker
    ASME Turbo Expo: Power for Land, Sea, and Air.